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Abstract —The propagation of millimeter waves in metallic waveguides

inhomogeneously filled with dielectric materials having surface plasma

layers is characterized. The modaf phase shift and attenuation of a 94-GHx

wave are computed for a 10-pm plasma layer thickness as a function of

carrier density. In the unexcited state, 90 percent of the millimeter-wave

power is confined to the interior air region of the guide, while the

remaining 10 percent propagates iu the semiconductor insert. In the

excited state at high injection levels, over 99 percent of the wave power

propagates in the air region. Consequently, in this state, the waveguide will

have a very low loss. A resonant cavity using the wavegoide configuration

is shown to have a wide tuning range and high cavity Q.

I. INTRODUCTION

F REE-CARRIER EFFECTS in semiconductors have

been used to create millimeter-wave devices such as

phase shifters and switches. The devices are dynamically

controlled by injecting free carriers into the semiconductor

via contacts [1], [2] or by optical injection [3], [4]. Optical

injection shows lower losses in the phase shifter applica-

tion if the carriers are confined to a thin layer near the

surface of the semiconductor. If diffusion into the bulk of

the semiconductor is allowed, losses can remain significant

even at high plasma densities [5]. The desire to prevent

carrier diffusion makes a semiconductor such as GaAs

appear attractive for these applications. An appropriate

heterojunction might be constructed to confine the carriers

near the surface.

The optically controlled phase shifter studied previously

uses an open-waveguide configuration. This is preferred in

some applications, for example, where integration of the

phase shifter with other elements of a radar front end may

be desirable.

In this paper, we analyze a structure that employes a

closed metallic waveguide that is partially filled with a

bulk semiconductor material. The phase shift is induced by
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the creation of a plasma region on the semiconductor

surface. A similar analysis for a closed-waveguide config-

uration has been presented [2], [6], [7] for use as a p-i-n

diode phase shifter. We show the phase shift and attenua-

tion characteristics using the thinner plasma regions more

characteristic of optically controlled phase shifters. Clearly,

injection of light or carriers into the closed waveguide

requires the existence of suitable apertures in the wave-

guide wall. The effects of these apertures are not addressed

in this paper since they have been adequately treated in

textbooks.

One advantage of the closed-waveguide configuration is

that most of the electromagnetic wave energy is confined

to the air region, especial] y when high plasma densities are

achieved on the surface of the semiconductor slab. This

limits the attenuation of the mode caused by the interac-

tion of the wave with the diffused carriers in the semi-

conductor slab, and allows attenuation to be reduced to

very low values for the high plasma densities. Because the

fields are mostly excluded from the semiconductor at high

plasma densities, we will use the uniform plasma layer

approximation in this paper rather than the more com-

plicated approach of [5], which uses a nonuniform plasma

density.

We extend the analysis of the waveguide configuration

to assess the performance of the device when used in a

closed cavity for frequency modulation. We plot the tuning

range which can be obtained and the variation in cavity

quality factor with plasma density. These results predict

that, at suitable plasma densities ( =1017 cm-3), large

tuning ranges can be obtained ( = 5 percent) while losses

due to the injected plasma are low. The cavity Q consider-

ing only losses due to the injected plasma is high enough

that the total ,Q could be dominated by other losses, such

as those due to walls or apertures, in a practical situation.

II. WAVE~UIDE MODES OF THE 1NH0M0GENEOUSL%

FILLED METALLIC GUIDE

The basic modes of propagation for slab-loaded rectan-

gular guides may be derived from magnetic and electric

types of Hertzian potential functions having single compo-

0018-9480/87/0700-0609$01.00 @1987 IEEE



610

DIELECTRIC

AY “l—a
* w

PLASMA
LAYER

*

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 7, JULY 1987

1 I I 1+ >
l~lylyl x

1 2

Fig. 1. Metallic millimeter waveguide with a semiconductor slab in-
serted on the guide wall. The surface plasma layer is formed from
photon flux irradiated from the opposite side.

nents directed normal to the air–dielectric interface. The

resultant fields may be classified as E or H modes with

respect to the interface normal [8], [9]. From the magnetic

Hertzian potential, we obtain the solution for a mode

which has no component of electric field normal to the

interface plane. The mode is referred to as a longitudinal-

section electric (LSE) mode.

Fig. 1 shows the basic geometry of the metallic guide

structure. We assume the plasma is of uniform density and

is confined to region 2. This assumption should lead to

reasonable results for this configuration for reasons dis-

cussed earlier. Propagation in the z direction is assumed

with dependence exp ( jot – yz ). There are many types of

modes that can propagate in this structure; however, we

limit our discussion to the dominant LSE mode.

For a magnetic-type Hertzian potential ~~ =
– y. the electric and magnetic fields are given

f+m (x, Y)e ,
by

~= – jtipoV X Il. (1)

H=vxvxnm (2)

and the wave function +m satisfies the wave equation

d2rj~ d2~~
—+[yz+k:lq]+m=o

dx2 + dy2
(3)

where k. is the free-space wavenumber and tc, is the

relative dielectric constant of the region i. We may solve

for the fields in each region and match the tangential
components at interfaces to obtain the solution valid for

all x. Appropriate solutions for +~ in each region, such

that the tangential electric field will vanish on the guide

boundary, are

{

Al sin px cos ( mmy/b) O<x<dl

tj~ = A2sin(qx - @)cos(mny/b) d1<x<d1+d2

A3sinr(a – x)cos(mny/b) dl+dz<x<a

(4)

where

~=[y2+k’K+321”2“)
~=[y2+k’Kda211’“)
‘=[y2+k’K+3211’2‘7)

The requirement of continuity of +~ and its derivatives at

x = dl and x = dl + d2 yields the eigenvalue equation

Y tan pdl + f tan rd~
P r

– tanqd2 = 2

1 – 1 tan pdl tan rd~
pr

(8)

determining the allowed values of the propagation con-

stant y.

The constants Al, A2, and A3 of the field expressions

can be determined from the appropriate boundary condi-

tion equations. The amplitude constants are written in

terms of the amplitude constant AZ, which is easily found

from a normalization condition:

A DA sin(qdl–@)
1 2

sin pdl

A DA sin[q(d1+d2) +@]
3 2

sin rd3

(9)

(lo)

III. PHASE SHIFT AND ATTENUATION

The propagation velocity of a waveguide with a plasma

layer will differ from its velocity in the unexcited guide.

The difference between the propagation constants of the

excited guide ~. and the unexcited guide & is a measure

of the phase shift at output (along 1 cm length). This phase

shift can be expressed as

&#l=27r(&&). (11)

The attenuation difference is simply the attenuation of the

excited structure since we assume the unexcited structure is

lossless. Therefore

8a=a~. (12)

The plasma region width dz is assumed to have a

uniform density of free carriers that are injected in this

region by photo excitation. The existence of the free car-

riers, or plasma, changes the dielectric constant of the

semiconductor according to the Drude–Lorentz formula

[10]:

where the subscript i denotes the different kinds of carriers
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Fig. 2. Phase shift versus plasma density for the cross sections are
a = 2.65 mm and b = 1.27 mm.

and

Km dielectric constant in the absence of free carriers,

Tt relaxation time of carrier i,

Y, collision frequency (1/~1),

U* plasma frequency (Niq2/micOu~),l/2

q electronic charge,

co permittivity of free space,

m, effective mass of carrier i,

N, number density of charge carrier i.

The material parameters for GaAs required in (13) can be

obtained from the literature. The dielectric constant of

these materials has recently been measured with high

accuracy [11]. The properties of GaAs required in the

Drude-Lorentz equations are summarized in [3].

Plots of the phase shift and attenuation for the LSE

mode as a function of plasma density are given in Figs. 2

and 3 for GaAs. We assumed waveguide dimensions of

2.65 x 1.27 mm2 for these calculations. We held the plasma

layer thickness d2 constant at 10 pm. Fig. 2 indicates that

very marked values of phase shift per unit length can be

obtained when the plasma density is sufficiently high. The

different curves in Fig. 2 correspond to different thick-

nesses of the semiconductor slab. As the thickness of the

slab is increased, the air gap is decreased by the same

amount, and the plasma layer moves closer to the center of

the waveguide. Fig. 2 illustrates that high phase shifts are

obtained when the semiconductor slab fills about 10 per-

cent of the total waveguide thickness. Fig. 3 also indicates

that the attenuation can be reduced by sufficiently in-

creasing the plasma density. The general shapes of these
curves are the same as those obtained from open-wave-

guide configurations [3], [5]. High attenuation occurs in the
region where the plasma is sufficiently dense to attenuate

the field but not yet dense enough to exclude it. As plasma

density increases further, the fields are “pushed out” of

the plasma region and attenuation is reduced substantially.

/\
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Fig. 3. Attenuation characteristics of the waveguide.
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Fig. 4. Resonant cavity design for metallic waveguide.

Attenuation also increases as the plasma layer is moved

toward the center of the waveguide.

IV. RESONANT CAVITY CONFIGURATION

In this section, we discuss the use of, the partially filled

metallic waveguide in a resonant cavity configuration. The

cavity is formed from the waveguide geometry shown in

Fig. 1 and has a length L, as shown in Fig. 4. The ,

boundary at z = L is assumed to be totally reflecting. At

the input boundary, located at z = O, external power is

supplied in an amount that offsets internal losses in the

plasma layer. Although the backward-traveling wave at the

input plane will have a diminished amplitude relative to

the forward wave, due to propagation losses, it is re-

plenished by tlie input field. These assumptions lead to a

steady-state condition iin the cavity. The power absorption

in the cavity is easily computed by integrating the z

component of the Poynting vector over the waveguide
cross section at z = O. The cavity resonates in the unex-

cited state at 94 GHz. We address the performance of the

cavity by calculations of (1) the cavi~y Q and (2) the ratio

8~/~0, where ~0 ( =94 GHz) is the passive resonant

frequency and d~ is the change in the resonant frequency

from ~O. The particular mode studied for the rectangular
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box is one of an infinite number of possible modes. If we

adopt the point of view that a resonant mode is the

standing wave pattern for incident and reflected waveguide

modes, any one of the infinite number of possible wave-

guide waves might be used, with any integer number of

half waves between shorting ends. However, we restrict our

attention to the dominant LSE ~01mode.

The resonant Q in the cavity is

where

u

w

PL

resonant frequency,

total stored energy in cavity,

average power loss.

The total power loss in the cavity will be composed of

losses due to the induced plasma, the waveguide walls, and

coupling apertures for both the millimeter waves and the

injected optical signal. The net cavity Q can be obtained

by separately computing the Q due to each loss mecha-

nism and then combining the separate values as

l/Q = ~ l/QZ. (15)

In this formula, each Q, is computed by considering only

its type of loss. In this paper, we compute only the Q, due

to the injected plasma layer in the semiconductor insert.

We consider three different regions: region 1 is air, region

2 is plasma excited in GRAs, and region 3 is unexcited

GaAs. The power P~ is the integral of the Poynting vector

at the z = O plane. This integral is composed of three parts,

separately evaluated over the three surfaces associated with

the three regions; we designate them as PI, Pz, and P3.

The total energy stored in the cavity also can be similarly

calculated from three separate volumes, designated as WI,

Wz, and W3.
The standing wave field pattern in the cavity will be

obtained by superposing oppositely directed traveling

waves. The electric and magnetic fields in region 1 are

El= j(Eyl++ E,l- )

= }[~WOyA1sinpx(e-YZ - e-z’~eyz)] (16)

R1=.2[- y2A1sinpx(e-Y’ +e-2Y~eYz)]

+ 2[– yA1pcospx(e-Y=– e-2 Y~eyZ)]. (17)

We have written the fields so that the forward-traveling
wave has an amplitude determined by Al at the position

z = O. As the wave traverses the cavity, it loses energy due

to absorption in the plasma. This energy loss is exhibited

by the exponential attenuation of the mode. We have

assumed a perfect reflector at z = L, but power absorbed

in the cavity is replenished at z = O. In an actual device, a

suitable coupling aperture would be required at z = O to

allow power to be coupled into the cavity. At resonant

condition, ~L = n T, where n =1,2,3, . . . . For the domi-

nant mode, put n =1, so that

e –2yL=e–2(a +j3)L=e–2aL (18)

The integral of the Poynting vector over the region 1 input

surface is

p = b@/@(ci2+&’)[A,12
1 4

“[sinh 2p,d1

2p, – 1-(’ (1 - e-4aL) (19)

where the subscripts r and i designate, respectively, the

real and imaginary parts of the variable.

The total energy stored, computed from that stored in

the electric and magnetic fields, is

()w = NOb(~2+~2)b%12 l–-e-4”L
1 2a

“[(sin;:’dl)
(P~+P; + a2 +~2 + ti2~oK,Co)

()

sin2p,d1
+

1
Zp, (p? +p2 - a2 ‘B2 - @2~0K160) . (20)1

The calculations for regions 2 and 3 are similar to those

for region 1. The Q is calculated by first summing the

power loss and stored energy for the three regions and

then substituting into (14). After considerable algebraic

manipulation, the Q can be expressed as

C+(d+p)l)
Q=

4a/?D
(21)

where

D=11+12+13 (22)

C=(k;K1,+&p;)~I

+( J@2,+ fl; – 9[2)~2

+ (/C~K3, + r,2 – r12)13 (23)

and

1
11=—

P,*rQ’

12=– ~(f21+Q3)

13=:Q3
zr

(24)

(25)

(26)

Q,= lq121m(p*sin pd, cos”pd1)

lq2sin2pd1 + p2cos2pd11
(27a)

~,= 14121rn(r*sinrd, cos*rd,)

lq2 sin2rd3 + r2cos2rd31
(27b)

where Im implies the imaginary part of the term in

parentheses, and * denotes the complex conjugate.

Plots of the cavity Q for different thicknesses of the

semiconductor slab insert are given in Fig. 5. The Q is very

high at the low plasma densities where there is little loss.

As plasma density increases, the Q decreases until the
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Fig. 5. Cavity Q for the wavegnide structure of the guide dimensions
support only the fundamental LSE mode.

plasma is dense enough to push the fields out of the

semiconductor and into the air region. The Q then begins

to increase.

An approximate formula suitable for estimating Q can

be obtained by realizing that most of the energy is con-

fined to the air region. We can then approximate

D=I1

c= (k;K1+#-~; )~l

k;h+p:-p; +az+pz
Q’

41x~

The Q is then inversly proportional to a as long as a is

small.

A given cavity should have many possible modes, and

for each mode the resonant frequency is determined by the

mode, the cavity dimensions, and the constants of the

dielectric filling the cavity. In order to get the tuned

frequency, we obtain from the resonant condition

AO=2BL (28)

where B = /3/k0 is the normalized propagation constant.

When the resonant frequency is shifted by a small

amount ~f, then the relation between wavelength and

frequency changes is

tiA/A~ = – 13f/f~. (29)

Combining (28) and (29), we can get

8f/fo= – 6B/B0 (30)

where rSB is the change in the normalized propagation

constant; it is dependent upon the carrier density of the
plasma layer. Consequently, we can control the resonant

frequency by controlling the plasma density of region 2 of

the dielectric slab. In Fig. 6, we show the results for the

frequency shift 8f for a GaAs dielectric insert with a

plasma surface layer. Note that a plasma density of 1017

cm–3 produces a substantial frequency shift with high

cavity Q. The shapes of the tuning curves are similar to the

12 13 n

PLA.&A DENS;Y IOX ( &m-3)

Fig. 6. Tuning characteristic of the millimeter-wave oscillator for reso-
nant cavity design.

shapes of the phase shift curves because both phase and

frequency shifts are due to a change in the phase velocity

of the wave as the plasma density varies. It is possible that

the cavity Q in an actual device would be determined by

losses in the conducting’ walls or in the apertures and

would be lower than the Q due to the injected plasma. If

this is the case, then the cavity Q would not change

appreciably as a function of plasma density.

V. CONCLUSIONS

In this work we have developed the theory of the “closed”

millimeter waveguide configuration. The metallic wave-

guide configuration has been used for a discussion of the

performance of a millimeter-wave phase shifter and a

millimeter-wave resonator. The main features of this new

structure are: (1) the system is closedl, (2) millimeter-wave

losses are relatively small, and (3) the structure can be used

as a resonant cavity configuration with a wide tuning

range and high cavity Q.

The main reason for low-loss propagation in the present

configuration is that a majority of the millimeter wave

field propagates in the air region of the guide at high

plasma densities. With high plasma levels, the effective

guide width is determined by the air-gap width because the

fields are forced from the plasma region.
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