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Characteristics of Metallic Waveguides
Inhomogeneously Filled with
Dielectric Materials with
Surface Plasma Layers
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AND MARION W. SCOTT, SENIOR MEMBER, IEEE

Abstract —The propagation of millimeter waves in metallic waveguides
inhomogeneously filled with dielectric materials ha{ving surface plasma
layers is characterized. The modal phase shift and attenuation of a 94-GHz
- wave are computed for a 10-pm plasma layer thickness as a function of
carrier density. In the unexcited state, 90 percent of the millimeter-wave
power is confined to the interior air region of the guide, while the
remaining 10 percent propagates in the semiconductor insert. In the

excited state at high injection levels, over 99 percent of the wave power

propagates in the air region. Consequently, in this state, the waveguide will
have a very low loss. A resonant cavity using the waveguide configuration
is shown to have a wide tuning range and high cavity Q.

I. INTRODUCTION

REE-CARRIER EFFECTS in semiconductors have

been used to create millimeter-wave devices such as
phase shifters and switches. The devices are dynamically
controlled by injecting free carriers into the semiconductor
via contacts [1], [2] or by optical injection [3], [4]. Optical
injection shows lower losses in the phase shifter applica-
tion if the carriers are confined to a thin layer near the
surface of the semiconductor. If diffusion into the bulk of
the semiconductor is allowed, losses can remain significant
even at high plasma densities [5]. The desire to prevent
carrier diffusion makes a semiconductor such as GaAs
appear attractive for these applications. An appropriate
heterojunction might be constructed to confine the carriers
near the surface.

The optically controlled phase shifter studied previously
uses an open-waveguide configuration. This is preferred in
some applications, for example, where integration of the
phase shifter with other elements of a radar front end may
be desirable.

In this paper, we analyze a structure that employes a
closed metallic waveguide that is partially filled with a
bulk semiconductor material. The phase shift is induced by
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the creation of a plasma region on the semiconductor
surface. A similar analysis for a closed-waveguide config-
uration has been presented [2], [6], [7] for use as a p-i-n
diode phase shifter. We show the phase shift and attenua-
tion characteristics using the thinner plasma regions more
characteristic of optically controlled phase shifters. Clearly,
injection of light or carriers into the closed waveguide
requires the existence of suitable apertures in the wave-
guide wall. The effects of these apertures are not addressed
in this paper since they have been adequately treated in
textbooks.

One advantage of the closed-waveguide configuration is
that most of the electromagnetic wave energy is confined
to the air region, especially when high plasma densities are
achieved on the surface of the semiconductor slab. This
limits the attenuation of the mode caused by the interac-
tion of the wave with the diffused carriers in the semi-
conductor slab, and allows attenuation to be reduced to
very low values for the high plasma densities. Because the
fields are mostly excluded from the semiconductor at high
plasma densities, we will use the uniform plasma layer
approximation in this paper rather than the more com-
plicated approach of [5], which uses a nonuniform plasma
density.

We extend the analysis of the waveguide configuration
to assess the performance of the device when used in a
closed cavity for frequency modulation. We plot the tuning
range which can be obtained and the variation in cavity
quality factor with plasma density. These results predict
that, at suitable plasma densities (=210*” cm™?), large
tuning ranges can be obtained ( =5 percent) while losses
due to the injected plasma are low. The cavity Q consider-
ing only losses due to the injected plasma is high enough
that the total Q could be dominated by other losses, such
as those due to walls or apertures, in a practical situation.

II. WAVEGUIDE MODES OF THE INHOMOGENEQUSLY
F1LLED METALLIC GUIDE

The basic modes of propagation for slab-loaded rectan-
gular guides may be derived from magnetic and electric
types of Hertzian potential functions having single compo-
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Fig. 1. Metallic millimeter waveguide with a semiconductor slab in-

serted on the guide wall. The surface plasma layer is formed from
photon flux irradiated from the opposite side.

nents directed normal to the air—dielectric interface. The
resultant fields may be classified as £ or H modes with
respect to the interface normal [8], [9]. From the magnetic
Hertzian potential, we obtain the solution for a mode
which has no component of electric field normal to the
interface plane. The mode is referred to as a longitudinal-
section electric (LSE) mode.

Fig. 1 shows the basic geometry of the metallic guide
structure. We assume the plasma is of uniform density and
is confined to region 2. This assumption should lead to
reasonable results for this configuration for reasons dis-
cussed earlier. Propagation in the z direction is assumed
with dependence exp(jw? — yz). There are many types of
modes that can propagate in this structure; however, we
limit our discussion to the dominant LSE mode.

For a magnetic-type Hertzian potential II, =
Xy, (x, y)e ¥, the electric and magnetic fields are given

by

E=— jopw x1I,

1)
2

H=v xv xII,,

and the wave function 1, satisfies the wave equation

d*y,,

dx?

d*y,,

e +[y2+ k2] ¥,,=0

(3)

where k, is the free-space wavenumber and k, is the
relative dielectric constant of the region i. We may solve
for the fields in each region and match the tangential
components at interfaces to obtain the solution valid for
all x. Appropriate solutions for i, in each region, such
that the tangential electric field will vanish on the guide
boundary, are

Aysin pxcos(mmy/b) 0<x<d,
¥, = A,sin(gx — ¢)cos(mmy/b) d<x<d +d,
Aysinr(a — x)cos(mmy/b) d+d,<x<a

(4)
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where

(5)

[ ma \2]1/2
p= Y2+k§'<1—<—b—) ]

[ mar \2]1/2

q= Y2+k§'€z—(7” (6)
i mar\2]1/2

r= ‘Y +k0K3 (—b-“) } . (7)

The requirement of continuity of ¢,, and its derivatives at
x=d, and x=d, +d, yields the eigenvalue equation

9 tan pd, + — 7 tan rd,
—tangd, = > (8)
1— —tan pd, tanrd,
pr

determining the allowed values of the propagation con-
stant vy.

The constants 4;, 4,, and A, of the field expressions
can be determined from the appropriate boundary condi-
tion equations. The amplitude constants are written in
terms of the amplitude constant A,, which is easily found
from a normalization condition:

Sin(qd1—¢)
A =4,— 9
1 2 sin pd, ( )
sin[g(d, +d,) + ¢]
= . 1
Ay =4, sin rd, (0)

III. PHASE SHIFT AND ATTENUATION

The propagation velocity of a waveguide with a plasma
layer will differ from its velocity in the unexcited guide.
The difference between the propagation constants of the
excited guide B, and the unexcited guide B, is a measure
of the phase shift at output (along 1 cm length). This phase
shift can be expressed as

50=20(8,~ ). 1)

The attenuation difference is simply the attenuation of the
excited structure since we assume the unexcited structure is
lossless. Therefore

da=a (12)

The plasma region width 4, is assumed to have a
uniform density of free carriers that are injected in this
region by photo excitation. The existence of the free car-
riers, or plasma, changes the dielectric constant of the
semiconductor according to the Drude-Lorentz formula
[10]:

zY
_Z ’2

w+y w "

1-Y =

1

(13)

k(w)=x,

where the subscript i denotes the different kinds of carriers
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Fig. 2. Phase shift versus plasma density for the cross sections are
a=2.65mm and b =127 mm.

and

k_ dielectric constant in the absence of free carriers,
7, relaxation time of carrier i,

v, collision frequency (1/7,),

w, plasma frequency (N,g%/m e k. ),>>

q electronic charge,

€, permittivity of free space,

m, effective mass of carrier i,

N, number density of charge carrier i.

The material parameters for GaAs required in (13) can be
obtained from the literature. The dielectric constant of
these materials has recently been measured with high
accuracy [11]. The properties of GaAs required in the
Drude-Lorentz equations are summarized in [3].

Plots of the phase shift and attenuation for the LSE
mode as a function of plasma density are given in Figs. 2
and 3 for GaAs. We assumed waveguide dimensions of
2.65x1.27 mm? for these calculations. We held the plasma
layer thickness d, constant at 10 pm. Fig. 2 indicates that
very marked values of phase shift per unit length can be
obtained when the plasma density is sufficiently high. The
different curves in Fig. 2 correspond to different thick-
nesses of the semiconductor slab. As the thickness of the
slab is increased, the air gap is decreased by the same
amount, and the plasma layer moves closer to the center of
the waveguide. Fig. 2 illustrates that high phase. shifts are
obtained when the semiconductor slab fills about 10 per-
cent of the total waveguide thickness. Fig. 3 also indicates
that the attenuation can be reduced by sufficiently in-
creasing the plasma density. The general shapes of these
curves are the same as those obtained from open-wave-
guide configurations [3], [5]. High attenuation occurs in the
region where the plasma is sufficiently dense to attenuate
the field but not yet dense enough to exclude it. As plasma
density increases further, the fields are “pushed out” of
the plasma region and attenuation is reduced substantially.
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Fig. 3. Attenuation characteristics of the waveguide.
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Fig. 4. Resonant cavity design for metallic waveguide.

Attenuation also increases as the plasma layer is moved
toward the center of the waveguide.

IV. RESONANT CAVITY CONFIGURATION

In this section, we discuss the use of the partially filled
metallic waveguide in a resonant cavity configuration. The
cavity is formed from the waveguide geometry shown in
Fig. 1 and has a length L, as shown in Fig. 4. The
boundary at z= L is assumed to be totally reflecting. At
the input boundary, located at z =0, external power is
supplied in an amount that offsets internal losses in the
plasma layer. Although the backward-traveling wave at the
input plane will have a diminished amplitude relative to
the forward wave, due to propagation losses, it is re-
plenished by the input field. These assumptions lead to a
steady-state condition in the cavity. The power absorption
in the cavity is easily computed by integrating the z
component of the Poynting vector over the waveguide
cross section at z=10. The cavity resonates in the unex-
cited state at 94 GHz. We address the performance of the
cavity by calculations of (1) the cavity Q and (2) the ratio
8f/f,, where f, (=94 GHz) is the passive resonant
frequency and 8f is the change in the resonant frequency
from f,. The particular mode studied for the rectangular
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box is one of an infinite number of possible modes. If we
adopt the point of view that a resonant mode is the
standing wave pattern for incident and reflected waveguide
modes, any one of the infinite number of possible wave-
guide waves might be used, with any integer number of
half waves between shorting ends. However, we restrict our
attention to the dominant LSE,,; mode.
The resonant Q in the cavity is

Q=wW/P, (14)

where

w resonant frequency,
W total stored energy in cavity,
P, average power loss.

The total power loss in the cavity will be composed of
losses due to the induced plasma, the waveguide walls, and
coupling apertures for both the millimeter waves and the
injected optical signal. The net cavity ¢ can be obtained
by separately computing the Q due to each loss mecha-
nism and then combining the separate values as

1/0=21/Q. (15)
In this formula, each Q, is computed by considering only
its type of loss. In this paper, we compute only the Q, due
to the injected plasma layer in the semiconductor insert.
We consider three different regions: region 1 is air, region
2 is plasma excited in GaAs, and region 3 is unexcited
GaAs. The power P, is the integral of the Poynting vector
at the z = 0 plane. This integral is composed of three parts,
separately evaluated over the three surfaces associated with
the three regions; we designate them as P, P,, and P;.
The total energy stored in the cavity also can be similarly
calculated from three separate volumes, designated as W,
W,, and W;.

The standing wave field pattern in the cavity will be
obtained by superposing oppositely directed traveling
waves. The electric and magnetic fields in region 1 are

Ey=9(E, -+E,-)

(16)

= yA[.]w,U‘()'YAl sinpx(e‘vl — e*ZyLeyz)]
[71 = )2[— ¥2A,sin px(e™ " + e*ZvLeyz)]
+ ZA[- yA, pcos px(e™ ¥ — e )| (17)

We have written the fields so that the forward-traveling
wave has an amplitude determined by A4; at the position
z = 0. As the wave traverses the cavity, it loses energy due
to absorption in the plasma. This energy loss is exhibited
by the exponential attenuation of the mode. We have
assumed a perfect reflector at z = L, but power absorbed
in the cavity is replenished at z = 0. In an actual device, a
suitable coupling aperture would be required at z=0 to
allow power to be coupled into the cavity. At resonant
condition, SL = nw, where n=1,2,3,---. For the domi-
nant mode, put n =1, so that

e*Z'yL — e—2(a+/,B)L — e—ZaL‘

(18)
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The integral of the Poynting vector over the region 1 input
surface is

bw,uo,B(a2+,32)|A1|2
P = 2
sinh2p d;, sin2p.d
. P 2y (l—e“""L) (19)
2p, 2p,

where the subscripts » and i/ designate, respectively, the
real and imaginary parts of the variable.

The total energy stored, computed from that stored in
the electric and magnetic fields, is

W N-ob(a2+:32)|A1|2 l_e—4aL
Lt 8 2a
sinh2p d,
[(T (pr2+p12+a2+:82+w2“0’€1€0)
sin2p,d,
+(—‘—2p_ (Pr2+l7;2_0‘2“.82”"-’2ﬂo"1€0)]- (20)

The calculations for regions 2 and 3 are similar to those
for region 1. The Q is calculated by first summing the
power loss and stored energy for the three regions and
then substituting into (14). After considerable algebraic
manipulation, the Q can be expressed as

C+(a*+8%*)D
_cH(@rp) o
4apD
where
D=L+1L+1, (22)
C = (kdxy, + p2 — p?)1,
+(k3’c2r+qr2_q12)12
+ (k§i<3, +r2- rIZ)I3 (23)
and
L=——0 (24)
. 2%
Yopp !
1
I=- (Q1+Q3) (25)
s 1
3=, Qs (26)
|¢/* Im( p*sin pd, cos* pd,)
A="7373 21 2 : (27a)
|q~sin” pd, + p*cos” pd,|
|g|* Im (r*sin rd, cos* rd
0,= 3 3) (27b)

lg?sin® rd; + r?cos® rds|

where Im implies the imaginary part of the term in
parentheses, and * denotes the complex conjugate.

Plots of the cavity Q for different thicknesses of the
semiconductor slab insert are given in Fig. 5. The Q is very
high at the low plasma densities where there is little loss.
As plasma density increases, the Q decreases until the
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Fig. 5. Cavity Q for the waveguide structure of the guide dimensions
support only the fundamental LSE mode.
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plasma is dense enough to push the fields out of the
semiconductor and into the air region. The Q then begins
to increase.

An approximate formula suitable for estimating Q can
be obtained by realizing that most of the energy is con-
fined to the air region. We can then approximate

D=1,
C= (k%"l_'-prz—Piz)Il
kg + pl - pi+a’+ B2
4af )

The Q is then inversly proportional to « as long as « is
small.

A given cavity should have many possible modes, and
for each mode the resonant frequency is determined by the
mode, the cavity dimensions, and the constants of the
dielectric filling the cavity. In order to get the tuned
frequency, we obtain from the resonant condition

Ao=2BL (28)

where B = B/k, is the normalized propagation constant.

When the resonant frequency is shifted by a small
amount 8f, then the relation between wavelength and
frequency changes is

X/ No=—8f/1s.
Combining (28) and (29), we can get

8f/fo=—0B/B, (30)
where 8B is the change in the normalized propagation
constant; it is dependent upon the carrier density of the
plasma layer. Consequently, we can control the resonant
frequency by controlling the plasma density of region 2 of
the dielectric slab. In Fig. 6, we show the results for the
frequency shift 8f for a GaAs dielectric insert with a
plasma surface layer. Note that a plasma density of 10"
cm™3 produces a substantial frequency shift with high
cavity Q. The shapes of the tuning curves are similar to the

(29)
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Fig. 6. Tuning characteristic of the millimeter-wave oscillator for reso-
nant cavity design.

shapes of the phase shift curves because both phase and
frequency shifts are due to a change in the phase velocity
of the wave as the plasma density varies. It is possible that
the cavity Q in an actual device would be determined by
losses in the conducting walls or in the apertures and
would be lower than the @ due to the injected plasma. If
this is the case, then the cavity ¢ would not change
appreciably as a function of plasma density.

V. CONCLUSIONS

In this work we have developed the theory of the “closed”
millimeter waveguide configuration. The metallic wave-
guide configuration has been used for a discussion of the
performance of a millimeter-wave phase shifter and a
millimeter-wave resonator. The main features of this new
structure are: (1) the system is closed, (2) millimeter-wave
losses are relatively small, and (3) the structure can be used
as a resonant cavity configuration with a wide tuning
range and high cavity Q.

The main reason for low-loss propagation in the present
configuration is that a majority of the millimeter wave
field propagates in the air region of the guide at high
plasma densities. With high plasma levels, the effective
guide width is determined by the air-gap width because the
fields are forced from the plasma region.
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